Banking & Insurance

Quadratic Equation For IBPS RRB Exam, Check Important Question

Home » Banking & Insurance » Quadratic Equation For IBPS RRB Exam

Quadratic Equation for IBPS RRB Exam- The topic of quadratic equations is a crucial part of the quantitative aptitude section in various competitive exams, including the IBPS RRB exam and other banking exams. Here we are going to discuss a few Quant Quadratic Equation Practice Questions for the Prelims Exam. These questions will be helpful for the upcoming IBPS RRB 2024 Exam. Though it is one of the trickiest topics from this section, these can be solved with constant practice which is why we are here with these practice questions along with their answers and detailed solutions. Mastering these equations is essential for scoring well in this section. Candidates check all details in the article below.

Sale Sale

What is a Quadratic Equation?

A quadratic equation is a second-degree polynomial equation in one variable of the form:

ax² + bx + c = 0

where a, b and c are constants, and the x is variable. The x represents the unknown quantity, and the constants a, b and c determine the shape and nature of the equation.

Important Question for Quadratic Equation

Question 1: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 3x2 – 24x + 36 = 0

II. 4y2 = y + 5

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 2: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 2x – 63 = 0

II. y2 + 14y + 48 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 3: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 + 15x + 54 = 0

II. y2 + 20y + 99 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 4: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 3x + 7y = 53

II. 7x – 5y = 17

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 5: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 27x + 180 = 0

II. y2 – 24y + 140 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 6: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 11x + 30 = 0

II. y2 – 11y + 18 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 7: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 + 3x – 10 = 0

II. y– 5y + 6 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 8: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 5x + 4 = 0

II. y+ 2y – 3 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 9: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 3x + 5y = 21

II. 9x – 2y = 12

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 10: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 4x2 + 16x – 20 = 0

II. 2y2 + 11y – 6 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Solution 1: A)

From I:

3x2 – 24x + 36 = 0

3x2 – 18x – 6x + 36 = 0

3x(x – 6) – 6(x – 6) = 0

(3x – 6)(x – 6) = 0

x = 2, 6

From II:

4y2 = y + 5

4y2 – y – 5 = 0

4y2 – 5y + 4y – 5 = 0

y(4y – 5) + 1(4y – 5) = 0

(4y – 5)(y + 1) = 0

y = -1, 5/4

So x > y

Hence, option a.

Solution 2: C)

From I:

x2 – 2x – 63 = 0

x2 – 9x + 7x – 63 = 0

x(x – 9) + 7(x – 9) = 0

(x + 7)(x – 9) = 0

x = 9, -7

From II:

y2 + 14y + 48 = 0

y2 + 8y + 6y + 48 = 0

y(y + 8) + 6(y + 8) = 0

(y + 8)(y + 6) = 0

y = -6, -8

No relation can be established between x and y.

Hence, option c.

Solution 3: D)

From I:

x2 + 15x + 54 = 0

x2 + 9x + 6x + 54 = 0

x(x + 9) + 6(x + 9) = 0

(x + 6)(x + 9) = 0

x = -6, -9

From II:

y2 + 20y + 99 = 0

y2 + 11y + 9y + 99 = 0

y(y + 11) + 9(y + 11) = 0

(y + 11)(y + 9) = 0

y = -9, -11

So x ≥ y

Hence, option d.

Solution 4: A)

From I:

3x + 7y = 53

3x = 53 – 7y

x = (53 – 7y)/3

From II:

7x – 5y = 17

7 × {(53 – 7y)/3} – 5y = 17

371 – 49y – 15y = 51

64y = 320

y = 5

Now x = {53 – 7 × 5}/3

x = 18/3

x = 6

So x > y

Hence, option a.

Solution 5: C)

From I:

x2 – 27x + 180 = 0

x2 – 15x  – 12x + 180 = 0

x(x – 15) – 12(x – 15) = 0

(x – 15)(x – 12) = 0

x = 15, 12

From II:

y2 – 24y + 140 = 0

y2 – 14y – 10y + 140 = 0

y(y – 14) – 10(y – 14) = 0

(y – 10)(y – 14) = 0

y = 14, 10

No relation can be established between x and y.

Hence, option c.

Solution 6: C)

From I:

x2 – 11x + 30 = 0

x2 – 6x – 5x + 30 = 0

x(x – 6) – 5(x – 6) = 0

(x – 6)(x – 5) = 0

x = 6, 5

From II:

y2 – 11y + 18 = 0

y2 – 2y – 9y + 18 = 0

y(y – 2) – 9(y – 2) = 0

(y – 2)(y – 9) = 0

y = 2, 9

Hence, option c.

Solution 7: E)

From I:

x2 + 3x – 10 = 0

x2 – 2x + 5x – 10 = 0

x(x – 2) + 5(x – 2) = 0

(x – 2)(x + 5) = 0

x = 2, -5

From II:

y– 5y + 6 = 0

y– 3y – 2y + 6 = 0                        

y(y – 3) – 2(y – 3) = 0

(y – 3)(y – 2) = 0

y = 3, 2

So, x ≤ y

Hence, option e.

Solution 8: D)

From I:

x2 – 5x + 4 = 0

x2 – x – 4x + 4 = 0

x(x – 1) – 4(x – 1) = 0

(x – 1)(x – 4) = 0

x = 1, 4

From II:

y+ 2y – 3 = 0

y2 + 3y – y – 3 = 0

y(y + 3) – 1(y + 3) = 0

(y + 3)(y – 1) = 0

y = -3, 1

Hence, option d.

Solution 9: B)

From I:

3x + 5y = 21

3x = 21 – 5y

x = (21 – 5y)/3

From II:

9x – 2y = 12

9 × {(21 – 5y)/3} – 2y = 12

(189 – 45y – 6y)/3 = 12              

189 – 51y = 36

51y = 153, y = 3

x = {(21 – 5y)/3} = 6/3 = 2

So, x < y

Hence, option b.

Solution 10: C)

From I:

4x2 + 16x – 20 = 0

4x2 + 20x – 4x – 20 = 0

x (4x + 20) – 1(4x + 20) = 0

(4x + 20)(x – 1) = 0

x = -5, 1

From II:

2y2 + 11y – 6 = 0

2y2 + 12y – y – 6 = 0

2y(y + 6) – 1(y + 6) = 0

(y + 6)(2y – 1) = 0

y = – 6, 1/2

Hence, option c.

Related Blogs

For More Details Regarding the IBPS RRB 2025 Notification for PO and Clerk, candidates can click on the provided links. Important details of the IBPS RRB PO and Clerk, such as syllabus, exam pattern, cut-off, online application, and previous year papers, are provided.

IBPS RRB Clerk Other Article

IBPS RRB Clerk Exam Pattern 2025IBPS RRB Clerk Syllabus 2025
IBPS RRB Clerk Salary 2025IBPS RRB Clerk Cut Off 2025
IBPS RRB Clerk Previous Year Paper

IBPS RRB PO Other Article

IBPS RRB PO SalaryIBPS RRB PO Exam Pattern
IBPS RRB PO Cut OffIBPS RRB PO Syllabus
IBPS RRB PO Previous Year Question Papers

Join our exclusive Telegram group where our experts are ready to answer all your queries, guide you in banking exam preparation, and give personalized tips to boost your success. Get access to real-time solutions, expert advice, and valuable resources to improve your study journey. [Click here to join now!]

Quadratic Equation For IBPS RRB Exam FAQ

What is a quadratic equation?

A quadratic equation is a polynomial equation of the form ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0, where a, b and c are constants, and x is a variable.

What are the methods to solve a quadratic equation?

The methods to solve a quadratic equation include: Factoring, Using the quadratic formula, Completing the square, and Graphing

Sweta Singh

Hi, I am Sweta Singh (B.Com Honours). I cleared many bank exams time by time but couldn't join because of my passion towards writing. I write blogs to help aspirants prepare for Banking and Insurance exams. These blogs turn out to be a one-stop destination for comprehensive information on some of the biggest competitive exams like SBI PO/Clerk, IBPS PO/Clerk, IBPS RRB PO/Clerk and RBI. My ultimate goal is to provide accurate and easy-to-understand information, covering topics like exam patterns, syllabus, study techniques, and more. Join me on this journey of knowledge!

Recent Posts

100 + DI Repeated Questions for RRB PO 2025, Check How to Solve It Easily?

In this article we are providing the 100 + DI Repeated Questions for RRB PO…

11 hours ago

RRB NTPC Salary 2025: In-Hand, Job Profile, Career Growth

RRB NTPC Salary 2025 details provided in this blog. Candidates can check the In-Hand salary,…

13 hours ago

All One Word Substitutions Asked In SSC CGL PDF, Download for Free

In this blog, we have provided All One Word Substitutions Asked In SSC CGL Exams…

16 hours ago

Expected Puzzle Questions for RRB PO 2025, Check Tips to Solve Them Easily

In this article we are providing the Expected Puzzle Questions for RRB PO 2025. Candidates…

19 hours ago

IDBI JAM 2025 Preparation Resources, Attempt Topic Wise Tests & Mock Tests

In this article we are providing the IDBI JAM 2025 Free preparation resources, Candidates can…

20 hours ago

IBPS PO 2025 Notification in August, PO Exam Date Out, Check All Detailes

The IBPS PO 2025 Notification is expected to be released in August 2025. The Probationary…

21 hours ago