Quadratic Equation For IBPS RRB Exam, Check Important Question
Sign Up on PracticeMock for Free Tests, General Awareness, Current Affairs, Exam Notifications and Updates

Home » Banking & Insurance » Quadratic Equation For IBPS RRB Exam

Quadratic Equation for IBPS RRB Exam- The topic of quadratic equations is a crucial part of the quantitative aptitude section in various competitive exams, including the IBPS RRB exam and other banking exams. Here we are going to discuss a few Quant Quadratic Equation Practice Questions for the Prelims Exam. These questions will be helpful for the upcoming IBPS RRB 2024 Exam. Though it is one of the trickiest topics from this section, these can be solved with constant practice which is why we are here with these practice questions along with their answers and detailed solutions. Mastering these equations is essential for scoring well in this section. Candidates check all details in the article below.

Vaisakhi Sale

What is a Quadratic Equation?

A quadratic equation is a second-degree polynomial equation in one variable of the form:

ax² + bx + c = 0

where a, b and c are constants, and the x is variable. The x represents the unknown quantity, and the constants a, b and c determine the shape and nature of the equation.

Important Question for Quadratic Equation

Question 1: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 3x2 – 24x + 36 = 0

II. 4y2 = y + 5

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 2: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 2x – 63 = 0

II. y2 + 14y + 48 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 3: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 + 15x + 54 = 0

II. y2 + 20y + 99 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 4: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 3x + 7y = 53

II. 7x – 5y = 17

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 5: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 27x + 180 = 0

II. y2 – 24y + 140 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 6: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 11x + 30 = 0

II. y2 – 11y + 18 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 7: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 + 3x – 10 = 0

II. y– 5y + 6 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 8: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. x2 – 5x + 4 = 0

II. y+ 2y – 3 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 9: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 3x + 5y = 21

II. 9x – 2y = 12

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Question 10: In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between x and y and choose the correct option.

I. 4x2 + 16x – 20 = 0

II. 2y2 + 11y – 6 = 0

A) x > y

B) x < y

C) x = y or the relationship cannot be established

D) x ≥ y

E) x ≤ y

Solution 1: A)

From I:

3x2 – 24x + 36 = 0

3x2 – 18x – 6x + 36 = 0

3x(x – 6) – 6(x – 6) = 0

(3x – 6)(x – 6) = 0

x = 2, 6

From II:

4y2 = y + 5

4y2 – y – 5 = 0

4y2 – 5y + 4y – 5 = 0

y(4y – 5) + 1(4y – 5) = 0

(4y – 5)(y + 1) = 0

y = -1, 5/4

So x > y

Hence, option a.

Solution 2: C)

From I:

x2 – 2x – 63 = 0

x2 – 9x + 7x – 63 = 0

x(x – 9) + 7(x – 9) = 0

(x + 7)(x – 9) = 0

x = 9, -7

From II:

y2 + 14y + 48 = 0

y2 + 8y + 6y + 48 = 0

y(y + 8) + 6(y + 8) = 0

(y + 8)(y + 6) = 0

y = -6, -8

No relation can be established between x and y.

Hence, option c.

Solution 3: D)

From I:

x2 + 15x + 54 = 0

x2 + 9x + 6x + 54 = 0

x(x + 9) + 6(x + 9) = 0

(x + 6)(x + 9) = 0

x = -6, -9

From II:

y2 + 20y + 99 = 0

y2 + 11y + 9y + 99 = 0

y(y + 11) + 9(y + 11) = 0

(y + 11)(y + 9) = 0

y = -9, -11

So x ≥ y

Hence, option d.

Solution 4: A)

From I:

3x + 7y = 53

3x = 53 – 7y

x = (53 – 7y)/3

From II:

7x – 5y = 17

7 × {(53 – 7y)/3} – 5y = 17

371 – 49y – 15y = 51

64y = 320

y = 5

Now x = {53 – 7 × 5}/3

x = 18/3

x = 6

So x > y

Hence, option a.

Solution 5: C)

From I:

x2 – 27x + 180 = 0

x2 – 15x  – 12x + 180 = 0

x(x – 15) – 12(x – 15) = 0

(x – 15)(x – 12) = 0

x = 15, 12

From II:

y2 – 24y + 140 = 0

y2 – 14y – 10y + 140 = 0

y(y – 14) – 10(y – 14) = 0

(y – 10)(y – 14) = 0

y = 14, 10

No relation can be established between x and y.

Hence, option c.

Solution 6: C)

From I:

x2 – 11x + 30 = 0

x2 – 6x – 5x + 30 = 0

x(x – 6) – 5(x – 6) = 0

(x – 6)(x – 5) = 0

x = 6, 5

From II:

y2 – 11y + 18 = 0

y2 – 2y – 9y + 18 = 0

y(y – 2) – 9(y – 2) = 0

(y – 2)(y – 9) = 0

y = 2, 9

Hence, option c.

Solution 7: E)

From I:

x2 + 3x – 10 = 0

x2 – 2x + 5x – 10 = 0

x(x – 2) + 5(x – 2) = 0

(x – 2)(x + 5) = 0

x = 2, -5

From II:

y– 5y + 6 = 0

y– 3y – 2y + 6 = 0                        

y(y – 3) – 2(y – 3) = 0

(y – 3)(y – 2) = 0

y = 3, 2

So, x ≤ y

Hence, option e.

Solution 8: D)

From I:

x2 – 5x + 4 = 0

x2 – x – 4x + 4 = 0

x(x – 1) – 4(x – 1) = 0

(x – 1)(x – 4) = 0

x = 1, 4

From II:

y+ 2y – 3 = 0

y2 + 3y – y – 3 = 0

y(y + 3) – 1(y + 3) = 0

(y + 3)(y – 1) = 0

y = -3, 1

Hence, option d.

Solution 9: B)

From I:

3x + 5y = 21

3x = 21 – 5y

x = (21 – 5y)/3

From II:

9x – 2y = 12

9 × {(21 – 5y)/3} – 2y = 12

(189 – 45y – 6y)/3 = 12              

189 – 51y = 36

51y = 153, y = 3

x = {(21 – 5y)/3} = 6/3 = 2

So, x < y

Hence, option b.

Solution 10: C)

From I:

4x2 + 16x – 20 = 0

4x2 + 20x – 4x – 20 = 0

x (4x + 20) – 1(4x + 20) = 0

(4x + 20)(x – 1) = 0

x = -5, 1

From II:

2y2 + 11y – 6 = 0

2y2 + 12y – y – 6 = 0

2y(y + 6) – 1(y + 6) = 0

(y + 6)(2y – 1) = 0

y = – 6, 1/2

Hence, option c.

Related Blogs

For More Details Regarding the IBPS RRB 2025 Notification for PO and Clerk, candidates can click on the provided links. Important details of the IBPS RRB PO and Clerk, such as syllabus, exam pattern, cut-off, online application, and previous year papers, are provided.

IBPS RRB Clerk Other Article

IBPS RRB Clerk Exam Pattern 2025IBPS RRB Clerk Syllabus 2025
IBPS RRB Clerk Salary 2025IBPS RRB Clerk Cut Off 2025
IBPS RRB Clerk Previous Year Paper

IBPS RRB PO Other Article

IBPS RRB PO SalaryIBPS RRB PO Exam Pattern
IBPS RRB PO Cut OffIBPS RRB PO Syllabus
IBPS RRB PO Previous Year Question Papers

Join our exclusive Telegram group where our experts are ready to answer all your queries, guide you in banking exam preparation, and give personalized tips to boost your success. Get access to real-time solutions, expert advice, and valuable resources to improve your study journey. [Click here to join now!]

Banking Course

Quadratic Equation For IBPS RRB Exam FAQ

What is a quadratic equation?

A quadratic equation is a polynomial equation of the form ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0, where a, b and c are constants, and the x is variable.

What are the methods to solve a quadratic equation?

The methods to solve a quadratic equation include: Factoring, Using the quadratic formula, Completing the square, Graphing

    Free Mock Tests for the Upcoming Exams



By Sweta Singh

I pen/write blogs to help aspirants prepare for SSC, Banking, and Engineering exams. These blogs turn out to be a one-stop destination for comprehensive information on some of the biggest competitive exams. My ultimate goal is to provide accurate and easy-to-understand information, covering topics like exam patterns, syllabus, study techniques, and more. Join me on this journey of knowledge!

Leave a Reply

Your email address will not be published. Required fields are marked *