Number System For SSC CGL Exam: The SSC CGL consists of four sections but here we will talk about the Number System for SSC CGL Exam which comes under the SSC CGL Quantitative Aptitude section. Most of the candidates are already familiar with this topic and the good part is that this is a very small and easy topic. The Number System for SSC CGL Exam consists of 2-3 questions in easy to moderate level. In this blog, we have provided the basic concepts and some questions related to the number system for SSC CGL exam along with the solution with explanations. Candidates are advised to practice these questions and boost their performance.
Number System is a mathematical concept, it is the representation of numbers or writing the numbers by using some set of digits or other symbols.
A number is a numerical value or mathematical value that is used for counting or measuring objects. Examples are
Now it’s time to practice the questions on different types of questions on the Number System. Practicing questions is very important to boost preparation and score the highest in the exam. Let’s start
Question 1: If (50/3)% of a number is added to itself then the number obtained is 4956 then find the original number.
A) 8428
B) 4248
C) 4824
D) 4284
Question 2: The 3rd and 7th terms of an arithmetic progression is 143 and 399 respectively. Find its 15th term.
A) 749
B) 865
C) 911
D) 857
Question 3: When a number is divided by 13 then it leaves a remainder 8 and when the quotient thus obtained, is divided by 5, it leaves a remainder 3. What will be the remainder if the number is divided by 65?
A) 28
B) 37
C) 47
D) 42
Question 4: By interchanging the digits of a two-digit number we get a number which is four times the original number minus 24. If the unit’s digit of the original number exceeds its ten’s digit by 7, then find the number.
A) 29
B) 18
C) 36
D) 58
Question 5: When a number is divided by 49 the remainder is 24. Find the remainder when the same number is divided by 7.
A) 6
B) 4
C) 3
D) 5
Question 6: (425 + 426 + 427 + 428) is divisible by which of the following?
A) 21
B) 19
C) 11
D) 17
Question 7: Find the remainder when (1056 + 5) is divided by 9
A) 3
B) 6
C) 2
D) 4
Question 8: If six-digit number 5x2y6z is divisible by 7, 11 and 13, then the value of 2x + 3y – 4z is:
A) 19
B) 11
C) 21
D) 23
Question 9: How many natural numbers less than 500 is divisible by 4 or 6 but not 24?
A) 187
B) 240
C) 120
D) 167
Question 10: Find the value of (22 + 222) – (12 + 112).
A) 512
B) 424
C) 366
D) 242
प्रश्न 1: यदि किसी संख्या में संख्या का (50/3)% जोड़ा जाए तो प्राप्त संख्या 4956 है, तो वास्तविक संख्या ज्ञात करें ?
A) 8428
B) 4248
C) 4824
D) 4284
प्रश्न 2: अंकगणितीय प्रगति का तीसरा और सातवां पद क्रमशः 143 और 399 है। इसका पन्द्रहवाँ पद ज्ञात करें?
A) 749
B) 865
C) 911
D) 857
प्रश्न 3: जब एक संख्या को 13 से विभाजित किया जाता है तो वह शेषफल 8 छोड़ती है और जब इस तरह प्राप्त भागफल को 5 से विभाजित किया जाता है, तो यह शेषफल 3 छोड़ता है।जब संख्या को 65 से विभाजित किया जाता है तो शेषफल कितना प्राप्त होगा?
A) 28
B) 37
C) 47
D) 42
प्रश्न 4: दो-अंकीय संख्या के अंको को आपस में बदल देने से हमें वह संख्या प्राप्त होती है जो वास्तविक संख्या से चार गुना से 24 कम होती है।यदि वास्तविक संख्या की इकाई अंक उसके दहाई अंकों के 7 से अधिक है, तो संख्या ज्ञात करें?
A) 29
B) 18
C) 36
D) 58
प्रश्न 5: जब एक संख्या को 49 से विभाजित किया जाता है तो शेषफल 24 होता है।उसी संख्या को 7 से विभाजित करने पर शेषफल ज्ञात करें।
A) 6
B) 4
C) 3
D) 5
प्रश्न 6: (425 + 426 + 427 + 428) निम्नलिखित में से किससे विभाजित होता है?
A) 21
B) 19
C) 11
D) 17
प्रश्न 7: (1056 + 5) को 9 से विभाजित करने पर प्राप्त शेषफल ज्ञात करें|
A) 3
B) 6
C) 2
D) 4
प्रश्न 8: यदि छह अंकीय संख्या 5x2y6z 7, 11 और 13 से विभाज्य है, तो 2x + 3y – 4z का मान है:
A) 19
B) 11
C) 21
D) 23
प्रश्न 9: 500 से कम ऐसी कितनी प्राकृतिक संख्या है जो 4 या 6 से विभाजित है पर 24 से नहीं?
A) 187
B) 240
C) 120
D) 167
प्रश्न 10: (22 + 222) – (12 + 112) का मान ज्ञात करें|
A) 512
B) 424
C) 366
D) 242
ANSWER KEYS and SOLUTIONS:
1) – 2) | 2) – 3) | 3) – 3) | 4) – 1) | 5) – 3) | 6) – 4) |
7) – 2) | 8) – 1) | 9) – 4) | 10) – 3) |
Solution 1: 2)
Let the original number be 6x
Since, (50/3)% = 1/6
New number = 6x + 6x × (1/6) = 7x
According to question,
7x = 4956
x = 708
Original number = 6x = 6 × 708 = 4248
Hence, option b.
Solution 2: 3)
Let the first term and common difference of the series be ‘a’ and ‘d’ respectively
According to the question,
{a + (7 – 1)d} – {a + (3 – 1)d} = 399 – 143
Or, 4d = 256
Or, d = 64
Therefore, a = 143 – 128 = 15
Therefore, 15th term of the series = a + (15 – 1)d = 911
Hence, option c.
Solution 3: 3)
Let the number be ‘x’ and the quotient be ‘y’
So, x = 13y + 8………………..(1)
And, y = 5z + 3
Putting value of ‘y’ in (1) we get
x = 13 × (5y + 3) + 8
x = 65y + 39 + 8
x = 65y + 47
So, when x is divided by 65 we will get remainder 47
Hence, option c.
Solution 4: 1)
Let the original number be ‘10x + y’
According to question;
y – x = 7……………………………………….(1)
10y + x = 4 × (10x + y) – 24
10y + x = 40x + 4y – 24
39x – 6y = 24…………………………………(2)
From equation (1) and (2), we get
39x – 6(x + 7) = 24
39x – 6x – 42 = 24
33x = 66
x = 2
y = 9
So, the desired number is 29.
Hence, option a.
Solution 5: 3)
According to the question,
Number = 49x + 24
Required remainder = (49x + 24)/7 = 7x + (7 × 3) + 3
Hence, option c.
Solution 6: 4)
(425 + 426 + 427 + 428) = 425(1 + 4 + 42 + 43) = 425 × 85 = 424 × 340
Therefore, it is divisible by 17 only
Hence, option d.
Solution 7: 2)
(1056 + 5) can be written as (9 + 1)56 + 5
Therefore, remainder = 156 + 5 = 6
Hence, option b.
Solution 8: 1)
LCM of 7, 11 and 13 = 1001
So, a six digit number will be divisible by 1001 if it is in the form of abcabc
So, comparing first three and last three digits of 5x2y6z, we get x = 6, y = 5 an z = 2
So, 2x + 3y – 4z = 2 × 6 + 3 × 5 – 4 × 2 = 19
Hence, option a.
Solution 9: 4)
Numbers less than 500 which are divisible by 4 = Quotient of (499/4) = 124
Number less than 500 which are divisible by 6 = Quotient of (499/6) = 83
Numbers less than 500 which are divisible by 24 = Quotient of (499/24) = 20
Therefore, required number of natural numbers = 124 + 83 – (2 × 20) = 167
Hence, option d.
Solution 10: 3)
Given, (22 + 222) – (12 + 112) = 4(1 + 112) – (1 + 112) = (1 + 112)(4 – 1) = 122 × 3 = 366
Hence, option c.
Yes, the number system for SSC CGL Exam provides questions in Hindi and English language.
A number system is a mathematical concept, it is the representation of numbers or writing the numbers by using some set of digits or other symbols.
You can find the solutions in this blog after the question section.
The SSC has released the SSC CHSL Tier 2 Answer Key 2024 on its official…
RRB conducted the RRB ALP Exam Analysis 2024 on 25th November 2024. Check difficulty level,…
SBI PO 2024 Notification will be released soon on its official website. Read on to…
Get the Hindu Editorial Vocabulary for 25th November & discover the toughest words and their…
Explore the SSC Stenographer 2024 Tier 1 Free Mock Test Challenge provided in this blog…
Explore the Union Bank LBO 2024 Free Preparation Resources for Online Exam to boost and…