Mensuration For SSC CGL Exam
Mensuration For SSC CGL Exam: Mensuration is one of the topics that can be asked in many government exams. Candidates can expect at least 2-3 mensuration questions at the difficulty level of easy to moderate in the SSC CGL Exam. Mensuration is a type of topic that belongs to quantitative aptitude and is used in daily life. In this blog, we have provided the basic concept of Mensuration along with the formulas. We have also provided the questions on mensuration in both Hindi and English language along with the answers and their detailed solutions. Candidates are advised to understand the basics first and then try to solve the questions.
Concept of Mensuration
Mensuration is a mathematical concept that deals with the measurement of figures and shapes such as length, width, height, area, perimeter, etc.
Formulas of Mensuration For 2D Shapes:
Rectangle:
- Area of Rectangle = Length × Breadth.
- Perimeter of a Rectangle = 2 × (Length + Breadth)
- Length of the Diagonal = √(Length2 + Breadth2)
Square:
- Area of a Square = Length × Length = (Length)2
- Perimeter of a square = 4 × Length
- Length of the Diagonal = √2 × Length
Parallelogram:
- Area of a Parallelogram = Length × Height
- Perimeter of a Parallelogram = 2 × (Length + Breadth)
Triangle:
- Area of a triangle=(1/2)(Base × Height)
For a triangle with sides measuring a, b and c, respectively:
- Perimeter = a + b + c
- s = semi perimeter = perimeter/2 = (a+b+c)/2
- Area of Triangle,
Trapezium:
- Area of a trapezium = (1/2) × (sum of parallel sides) × (distance between parallel sides)
= (1/2) × (AB+DC) × AE - Perimeter of a Trapezium = Sum of All Sides
Rhombus:
- Area of a rhombus=(1/2)×Product of diagonals
- Perimeter of a rhombus = 4 × l
Mensuration Formulas For 3D Shapes
Shape | Volume (Cubic units) | Curved Surface Area (CSA) or Lateral Surface Area (LSA) (Square units) | Total Surface Area (TSA) (Square units) |
Cube | a3 | LSA = 4 a2 | 6 a2 |
Cuboid | l × b × h | LSA = 2h (l + b) | 2 (lb +bh +hl) |
Sphere | (4/3) π r3 | 4 π r2 | 4 π r2 |
Hemisphere | (⅔) π r3 | 2 π r2 | 3 π r2 |
Cylinder | π r2 h | 2π r h | 2πrh + 2πr2 |
Cone | (⅓) π r2 h | π r l | πr (r + l) |
Questions on Mensuration with Solutions
Practice the different types of questions related to mensuration and find detailed solutions along with the explanation.
Mensuration Questions in the English Language
Question 1: A solid metallic sphere of radius 26 cm is melted and recast into a cone having diameter of the base as 26 cm. What is the height of the cone?
A) 104 cm
B) 492 cm
C) 416 cm
D) 304 cm
Question 2: How many spheres each of radius 2.1 cm can be formed by melting a metallic cuboid if the length, breadth and height of the cuboid are 44.1 cm, 15 cm and 22 cm, respectively?
A) 380
B) 365
C) 350
D) 375
Question 3: The radius and height of right circular cylindrical pipe are 21 cm and 7 cm. Find the cost of overlaying the curved part of the pipe with aluminium sheet costing Rs. 2 per cm2
A) Rs. 1,848
B) Rs. 422
C) Rs. 844
D) Rs. 924
Question 4: A solid copper sphere of radius 9 cm is melted and moulded into a right circular cylindrical rod of radius 3 cm. What is the length of this rod?
A) 112 cm
B) 108 cm
C) 180 cm
D) 90 cm
Question 5: Base radius of a right circular cone is equal to the edge of a cube whose volume is equal to the 1728 m3. Find the height of the cone if slant height of the cone is 37 metres.
A) 35 metres
B) 37 metres
C) 32 metres
D) 34 metres
Question 6: Base area of a right circular cylinder is equal to the area of a rectangle having its length 6.6 cm. What will be the perimeter of the rectangle if radius of the cylinder is 2.1 cm? (Take π = )
A) 17.4 cm
B) 8.7 cm
C) 14.6 cm
D) 16.8 cm
Question 7: The radii of the ends of a frustum of a cone are 5 cm and 2 cm. Find the volume of frustrum if its height is 14 cm. (Use π = )
A) 548 cm3
B) 572 cm3
C) 458 cm3
D) 624 cm3
Question 8: The length of the edge of a cube is 6.3 cm. What will be the volume of the largest sphere that can be carved out from the cube? (Take π = )
A) 156.328 cm3
B) 130.977 cm3
C) 160.321 cm3
D) 172.324 cm3
Question 9: A rectangular water tank is 3 metres high, 6 metres long and 7 metres wide. How much water (in litres) can it hold?
A) 1,26,000
B) 1,44,000
C) 1,14,000
D) 1,26,00
Mensuration Questions in the Hindi Language
प्रश्न 1: 26cm त्रिज्या वाले एक ठोस धातु के गोले को पिघलाकर 26cm आधार व्यास वाले एक शंकु में बदल दिया जाता है। शंकु की ऊंचाई कितनी है?
A) 104 cm
B) 492 cm
C) 416 cm
D) 304 cm
प्रश्न 2: यदि घनाभ की लंबाई, चौड़ाई और ऊंचाई क्रमशः 44.1cm , 15cm और 22cm है, तो एक धात्विक घनाभ को पिघलाकर 2.1cm त्रिज्या वाले कितने गोले बनाए जा सकते हैं?
A) 380
B) 365
C) 350
D) 375
प्रश्न 3: लंब वृत्ताकार बेलनाकार पाइप की त्रिज्या और ऊँचाई 21cm और 7cm है। पाइप के वक्र हिस्से को Rs. 2 per cm2 की दर से एल्यूमीनियम शीट से ढकने की लागत ज्ञात कीजिए।
A) Rs. 1,848
B) Rs. 422
C) Rs. 844
D) Rs. 924
प्रश्न 4: 9cm त्रिज्या वाले एक ठोस तांबे के गोले को पिघलाकर 3cm त्रिज्या वाली एक लंब वृत्ताकार बेलनाकार छड़ में ढाला जाता है। इस छड़ की लंबाई कितनी है?
A) 112 cm
B) 108 cm
C) 180 cm
D) 90 cm
प्रश्न 5: एक लंब वृत्तीय शंकु के आधार की त्रिज्या एक घन के किनारे के बराबर है जिसका आयतन 1728 m3 के बराबर है। यदि शंकु की तिरछी ऊंचाई 37 metres है तो शंकु की ऊंचाई ज्ञात करें।
A) 35 metres
B) 37 metres
C) 32 metres
D) 34 metres
प्रश्न 6: एक लम्ब वृत्तीय बेलन का आधार क्षेत्रफल, एक आयत के क्षेत्रफल के बराबर है जिसकी लंबाई 6.6 cm है। यदि बेलन की त्रिज्या 2.1 cm है तो आयत का परिमाप क्या होगा? (π = लें)
A) 17.4 cm
B) 8.7 cm
C) 14.6 cm
D) 16.8 cm
प्रश्न 7: एक शंकु के छिन्नक के सिरों की त्रिज्याएँ 5 cm और 2 cm हैं। यदि छिन्नक की ऊँचाई 14 cm है तो उसका आयतन ज्ञात करें। (π = का प्रयोग करें)
A) 548 cm3
B) 572 cm3
C) 458 cm3
D) 624 cm3
प्रश्न 8: एक घन के किनारे की लंबाई 6.3 cm है। घन से निकाले जा सकने वाले सबसे बड़े गोले का आयतन क्या होगा? (Take π = )
A) 156.328 cm3
B) 130.977 cm3
C) 160.321 cm3
D) 172.324 cm3
प्रश्न 9: एक आयताकार पानी टैंक 3 metres ऊंची, 6 metres लंबी और 7 metres चौड़ी है। इसमें कितना पानी (litres में) आ सकता है?
A) 1,26,000
B) 1,44,000
C) 1,14,000
D) 1,26,00
ANSWER KEYS and SOLUTIONS:
1) – 3) | 2) – 4) | 3) – 1) | 4) – 2) | 5) – 1) | 6) – 1) |
7) – 2) | 8) – 2) | 9) – 1) | 10) – 2) |
Solutions of the Above Questions with Explanation
Solution 1: 3)
Since we know volume of a sphere = 4/3πr3 and volume of a cone = 1/3πr2h
Here r = radius, h = height
Let the height of the cone be ‘h’
Radius of the base of the cone = (26/2) = 13 cm
Now,
(4/3) X π X 263 = (1/3) X π X 132 X h
Or, 4 X 17576 = 169 X h
So, h = 416
So, height of the cone = 416 cm
Hence, option c.
Solution 2: 4)
Let the number of spheres that can be formed be ‘n’.
ATQ, volume of cuboid = volume of ‘n’ spheres
So, 44.1 X 15 X 22 = n x (4/3) x (22/7) x (2.1)3
So, ‘n’ = 375
Hence, option d.
Solution 3: 1)
We know, curved surface area of a cylinder = 2π X Radius of cylinder X Height of cylinder
Or, curved surface area of the given pipe = 2 X (22/7) X 7 X 21 = 924 cm2
Required cost of overlaying = 924 X 2 = Rs. 1,848
Hence, option a.
Solution 4: 2)
Since, the sphere is moulded in form of the cylindrical rod, therefore their volumes will be equal
Let the length/height of the rod be ‘h’ cm
ATQ:
Since we know volume of a sphere = (4/3) x π x radius3
And we also know volume of a cylinder = π X radius2 X length
Or, 4 X 243 = 9 X ‘h’
Or, ‘h’ = 108
So, length of the rod = 108 cm
Hence, option b.
Solution 5: 1)
Let the height of the cone be ‘h’ metres.
ATQ,
volume of the cube = 1728
Or, edge3 = 1728
So, edge of the cube = 12 metres
radius of the cone (r) = edge of the cube = 12 metres
Since, slant height2 = height2 + radius2
So, ‘h’ =
Or, ‘h’ =
Or, ‘h’ =
So, ‘h’ = 35
Required height = 35 metres
Hence, option a.
Solution 6: 1)
Let the breadth of the rectangle be ‘b’ cm and radius of the c
ATQ, πr2 = 6.6 X b
Or,
Or, ‘b’ =
So, ‘b’ = 2.1
So, perimeter of the rectangle = 2 X (length + breadth)
= 2 X (6.6 + 2.1)
= 2 X 8.7
= 17.4 cm
Hence, option a.
Solution 7: 2)
Volume of a frustum of a cone = (πh/3) X (R2 + r2 + Rr)
(Where ‘R’ = larger radius, ‘r’ = smaller radius and ‘h’ = height of the cone)
So, volume = (1/3) X (22/7) X 14 X (52 + 22 + 5 X 2)
= (44/3) X (25 + 4 + 10)
= (44/3) X 39
= 572 cm3
Hence, option b.
Solution 8: 2)
Let the radius of the sphere be ‘r’ cm.
For maximum volume of the sphere, diameter of the sphere will be equal to the length of the edge of the cube.
So, radius of the sphere = (6.3/2) cm
So, Required volume = (4π/3) x r3 =(4/3) x (22/7) x (6.3/2) X (6.3/2) X (6.3/2) = 130.977 cm3
Hence, option b.
Solution 9: 1)
As we know, volume of a cuboid = Length X Breadth X Height
So, volume of the tank = 3 X 6 X 7 = 126 m3
1 m3 = 1000 litres
So, quantity of water the tank can hold = 126 X 1000 = 1,26,000 litres
Hence, option a.
Mensuration For SSC CGL Exam FAQs
Candidates can expect at least 2-3 questions of mensuration for SSC CGL Exam.
The difficulty level of questions of Mensuration for SSC CGL Exam is easy to moderate.
Mensuration is a mathematical concept that deals with the measurement of figures and shapes such as length, width, height, area, perimeter, etc.
- Sign Up on Practicemock for Updated Current Affairs, Free Topic Tests and Free Mini Mocks
- Sign Up Here to Download Free Study Material
Free Mock Tests for the Upcoming Exams